Evolution Strategies as a Scalable Alternative to Reinforcement Learning

نویسندگان

  • Tim Salimans
  • Jonathan Ho
  • Xi Chen
  • Ilya Sutskever
چکیده

We explore the use of Evolution Strategies, a class of black box optimization algorithms, as an alternative to popular RL techniques such as Q-learning and Policy Gradients. Experiments on MuJoCo and Atari show that ES is a viable solution strategy that scales extremely well with the number of CPUs available: By using hundreds to thousands of parallel workers, ES can solve 3D humanoid walking in 10 minutes and obtain competitive results on most Atari games after one hour of training time. In addition, we highlight several advantages of ES as a black box optimization technique: it is invariant to action frequency and delayed rewards, tolerant of extremely long horizons, and does not need temporal discounting or value function approximation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model-Based Stochastic Search for Large Scale Optimization of Multi-Agent UAV Swarms

Recent work from the reinforcement learning community has shown that Evolution Strategies are a fast and scalable alternative to other reinforcement learning methods. In this paper we show that Evolution Strategies are a special case of model-based stochastic search methods. This class of algorithms has nice asymptotic convergence properties and known convergence rates. We show how these method...

متن کامل

Improving Exploration in Evolution Strategies for Deep Reinforcement Learning via a Population of Novelty-Seeking Agents

Evolution strategies (ES) are a family of blackbox optimization algorithms able to train deep neural networks roughly as well as Q-learning and policy gradient methods on challenging deep reinforcement learning (RL) problems, but are much faster (e.g. hours vs. days) because they parallelize better. However, many RL problems require directed exploration because they have reward functions that a...

متن کامل

Hierarchical Reinforcement Learning for Spoken Dialogue Systems

This thesis focuses on the problem of scalable optimization of dialogue behaviour in speech-based conversational systems using reinforcement learning. Most previous investigations in dialogue strategy learning have proposed flat reinforcement learning methods, which are more suitable for small-scale spoken dialogue systems. This research formulates the problem in terms of Semi-Markov Decision P...

متن کامل

Step Size Adaptation in Evolution Strategies using Reinforcement Learning

AbstractWe discuss the implementation of a learning algorithm for determining adaptation parameters in evolution strategies. As an initial test case, we consider the application of reinforcement learning for determining the relationship between success rates and the adaptation of step sizes in the (1+1)-evolution strategy. The results from the new adaptive scheme when applied to several test fu...

متن کامل

A Threshold-based Model of Reinforcement Learning

A generic and scalable Reinforcement Learning scheme for Artificial Neural Networks is presented, providing a general purpose learning machine. By reference to a node threshold three features are described 1) A mechanism for Primary Reinforcement, capable of solving linearly inseparable problems 2) The learning scheme is extended to include a mechanism for Conditioned Reinforcement, capable of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1703.03864  شماره 

صفحات  -

تاریخ انتشار 2017